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ABSTRACT 

For more than two decades, a myriad of design and research 
methods have been proposed in the ICAD community. 
Neurological methods have been presented since the 
inception of ICAD, and psychological human-subjects 
research has become as a legitimate approach to auditory 
display design and evaluation. However, little research has 
been conducted on modelling approaches to formalize 
human behavior in response to auditory displays. To bridge 
this gap, the present paper introduces computational 
modelling in auditory displays using the Queuing Network-
Model Human Processor (QN-MHP) framework. After 
delineating the advantages of computational modelling and 
the QN-MHP framework, the paper introduces four case 
studies, which modelled drivers’ behavior in response to in-
vehicle auditory warnings, followed by the implications and 
future work. We hope that this paper can spark lively 
discussions on computational modelling in the ICAD 
community and thus, more researchers can benefit from 
using this method for future research. 

1. INTRODUCTION 

For over 25 years, the International Community for 
Auditory Display (ICAD) has developed and discussed a 
variety of methods and methodologies. Inherently, auditory 
display research is multidisciplinary and it involves 
different approaches, including art and design, as well as 
science and engineering. Given that the main goal of 
auditory displays is to make it easy for users to learn and 
use an interface, a human factors approach becomes a 
necessary method.  

In human factors, different levels of approaches are 
required to validate a construct (e.g., [1]) just as in 
cognitive science [2]. On a psychological level, we can 
conduct experiments to show behavioral patterns. On a 
neurological level, we can use neuroimaging techniques 
(e.g., fMRI, fNIRS, EEG) to observe neural activities 
underlying behaviors. On a computational level, we can 
build mathematical models to simulate and predict 
behaviors. In the auditory display research community, 
psychological level approaches have seemed to settle down. 
Many papers have included a type of human subject tests, 
such as experiments, usability tests, focus groups or at least, 
interviews or questionnaires. When it comes to the 
neurological level, this dates back to Alvin Lucier's “Music 
for Solo Performer” using EEG data. Neuroimaging 
techniques have been used not just for neurological data-
based sonification, but also for research on human behavior 
with music using fNIRS [3] or auditory cues using EEG [4]. 
In contrast, little research has been conducted on the 
computational level approaches in auditory displays.  

The present study introduces the ICAD community to 
the use of computational modelling of behavioral responses 
to auditory displays. More specifically, we introduce four 
computational models of driver behaviors in response to in-
vehicle auditory warnings in manual and automated 
vehicles with a focus on the Queueing Network-Model 
Human Processor (QN-MHP) framework. We hope that this 
paper will spark the lively discussion on the computational 
modelling approaches in the ICAD community, which will 
ultimately lead to a more balanced methodological practice 
for the development of auditory displays.   

1.1 Why Computational Modelling? 

Modelling is used in many domains in science and 
engineering. Models allow researchers to represent 
complicated phenomena as an abstract form and to simulate 
the dynamic state changes [5]. In sonification, design 
research is a necessary approach [6, 7], whereas modelling 
can also be a powerful research tool. Models are 
economical. Researchers do not always need to recruit 
participants to test different parameters on the outcomes. 
Models are accessible. Students and novices can easily 
modify the parameters to determine the effects of the 
changes without any design skills. Computational models 
have even more advantages. They quantify how different 
design parameters can influence human behaviors. 
Computational models enable simulations with diverse 
factors and predictions about future outcomes. They are 
often faster than real-time testing of large numbers of 
potential real-world scenarios, which may be difficult or 
even impossible to assess due to high risk or cost [8]. 

1.2 Why the QN-MHP Framework? 

Different types of modelling approaches can be employed. 
Qualitative models explain human behaviors theoretically, 
whereas computational models provide quantitative 
relationships between the factors and the phenomena. Some 
models are built in a bottom-up fashion (e.g., machine 
learning), while others are built in a top-down fashion (e.g., 
cognitive architecture). Nowadays, much research has been 
conducted on modelling using the bottom-up approach, but 
little research has focused on human behavior modelling 
with respect to auditory displays. Likewise, in the 
traditional cognitive architecture approach, little research 
has been conducted with a focus on auditory displays. With 
the machine learning method, we can explore diverse 
unstructured data. However, it does not necessarily provide 
an explanation about the neurological or psychological 
mechanisms. In contrast, cognitive architecture can 
describe such mechanisms better. Among various cognitive 
architecture frameworks–e.g., ACT-R [9], EPIC [10], 
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SOAR [11], MHP, we focus on Queueing Network Model 
Human Processor (QN-MHP) [12] in the present paper.  

The QN-MHP has many advantages to model human 
behaviors in response to auditory displays over other 
frameworks. QN-MHP has been used for modelling of 
response time based on neurological and psychological data. 
Its sub-network is built to represent a refined auditory 
system structure. It is one of the few frameworks that has 
been used for auditory display research. After briefly 
introducing the QN-MHP framework, we will delineate four 
case studies, all of which are in the automotive research 
area. QN-MHP is also good at simulating multitasking, 
which is often necessary for driving situations. Therefore, 
QN-MHP is appropriate for modelling drivers’ behaviors in 
response to in-vehicle auditory displays.   

1.3 What is the QN-MHP Framework? 

The QN-MHP framework [12] represents the human 
cognition system as a queuing network based on several 
similarities to brain activities. QN-MHP consists of three 
subnetworks: perceptual, cognitive, and motor subnetworks, 
as described in Figure 2 (Appendix). Brain areas with 
similar functions are represented as servers and neural 
pathways connecting them as routes are represented as links 
in the queuing network, as seen in Figure 1.  
 

 
Figure 1: Approximate mapping of servers in the queuing 

Network Model onto the Human Brain [14]. 
 

A computational cognitive architecture called the 
queuing network-MHP (QN-MHP) has been developed as an 
integration of queuing networks and MHP for both 
mathematical modelling and real-time generation of 
psychological behavior. The queuing network model divides 
each process stage into a subnetwork of a small number of 
servers and thus, has a level of granularity that falls between 
the neural network and MHP models. 

Each subnetwork is composed of multiple servers and 
links among these servers. Each server is an abstraction of a 
brain area with specific functions, and links among servers 
represent neural pathways among functional brain regions 
(Figure 2). The neurological processing of stimuli is 
illustrated in the transformation of entities passing through 
routes in QN-MHP. 

QN-MHP has been successfully used to generate human 
performance and mental workload in real time, including 
driver performance and driver workload [14], transcription 
typing [15], and visual–manual tracking performance and 
mental workload measured by event-related potential (ERP) 
techniques. More basic information about QN-MHP is 

presented in [12] with specific explanations of its structure, 
assumptions, and implementation. 

2. CASE STUDIES USING QN-MHP FRAMEWORK 

In the present paper, we introduce four case studies to 
model drivers’ behaviors in response to auditory displays in 
driving situations (see Table 1). The first paper modelled 
drivers’ behaviors in response to speech warnings, the 
second paper to speech and non-speech warnings, and the 
last two papers improved modelling about non-speech 
warnings. We intentionally selected a line of research in the 
same domain to demonstrate how the models can be applied 
and enhanced to different situations (manual vehicles vs. 
automated vehicles), different auditory display types 
(speech vs. non-speech), and different modelling 
parameters (objective data vs. subjective data). Note that 
we did not explain the entire model of those studies, but we 
focused on auditory perception and processes. 

2.1 Speech warnings in manual (connected) vehicles 

The first study modelled driver behaviors in response to 
speech warnings in manual driving situations [16]. They 
modelled crash rate and response time. 

2.1.1 Modelling 

Modelling the effect of speech warning parameters on the 
probability of route choice 
At server B (Phonological loop), there are two routes to 
move to either Server C (long route) or Server W (short 
route). The long route involves the activation of accurate 
hazard evaluation, whereas the short route involves a rapid 
automatic activation. The deciding probability of the two 
routes includes learning about the relationships between 
warning parameters and the hazard situations. Auditory 
stimuli are coactivated with the motor and premotor cortex 
(Server W) and the primary auditory cortex [17]. The 
probability of route choice is updated as participants learn 
from the association between loudness levels (or signal 
words) and hazard urgency.  

The relationship between changes in loudness and 
changes in perceived urgency can be quantified by Stevens’ 
Power Law [18]. Also, the loudness is positively correlated 
with urgency [18]. The perceived urgency (UL) and 
annoyance (AL) as a function of warning loudness were 
modelled as follows: 

 
log(UL) = mU log(L) + kU + ε1  (1) 
log(AL) = mA log(L) + kA + ε2  (2) 

 
where L represents the loudness level and m and k 

quantify the relationship between perceived value and 
objective loudness change. The relationship between 
intensity and perceived urgency/annoyance was previously 
quantified [19]. Stevens’ Power Law states that the loudness 
(L) is proportional to I0.3, where I is the sound intensity [20]. 
Therefore, the parameters are quantified as: mU = 1.33, mA = 
1.45, kU = − 0.64, kA = − 0.91. ε1 and ε2 are normally 
distributed random factors following distribution [0, 0.7] 
and [0, 0.86], respectively [21]. 
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Modelling the effect of speech warning characteristics on 
the warning perception, memory decay and hazard 
evaluation 
The effect of loudness on speech warning perception was 
modelled at Server 6 (Auditory Recognition) because the 
activation of the lower auditory processing level increased  
as the loudness increased [22]. The semantic features of 
signal words are recognized at the superior temporal sulcus, 
which was modelled at Server 8 (Auditory Recognition and 
location) [23]. 

The interference caused by the speech warnings on the 
ongoing tasks can cause memory decay [24]. Therefore, the 
effect of warning lead time on memory decay was modelled 
in the working memory system about auditory processing 
represented by Servers B (Phonological loop) and C (Central 
executive). fMRI studies showed that hazard evaluation 
activated the medial prefrontal cortex, the inferior frontal 
gyrus, the cerebellum, and the amygdala [25], which were 
presented by Server F (complex cognitive function).  
 
The relationship between speech word choice and perceived 
urgency  
Much research has shown a stable relationship between 
speech warning word choice and perceived urgency. 
Hollander and Wogalter [26] showed urgency ratings in a 
descending order: deadly, danger, warning, caution, and 
notice. The perceived urgency of “danger,” “caution” and 
“notice” spoken by a female voice are quantified as 
90.53,72.40 and 46.81 on a 100 points scale [18]. 

Speech warning parameters have different effects on 
response error rates in distinct stages of speech warning 

responses. When humans process speech warnings through 
route I, the error rate was mostly influenced by the effects of 
loudness and signal words on speech warning perception. 
However, when speech warnings are processed through 
route II, the error rate in the speech warning responses was 
also influenced by the effects of lead time on potential 
memory decay of the speech warnings and hazard evaluation. 
Thus, the two cases are modelled in different ways, with 
route I through server W directly (Appendix) described as 
the short route and route II through server C (Appendix) as 
the long route. 
 
Modelling the response time to speech warnings  
Given that response time is one of the most widely used 
dependent measures in cognitive psychology and human 
factors, it has been widely used in many modelling works.  
In QN-MHP, entity processing time at an individual server 
is independent of arrivals of entities, and routing is 
independent of the state of the system. In this case, the 
response time of a speech warning can be modelled by 
summing the processing time of all the servers on the route. 
Therefore, the response time (RTi) to speech warnings 
through route i is modelled as: 
 

RTi = T5 + T6 + T8 + TB+ TW + TY + TZ, i = I  (3) 
RTi = T5 + T6 + T8 + TB+ TC + TF + TC + TW + TY + TZ, i = 

II (4) 
 

where Tk is the processing time of speech warning at 
Server k. The processing time of servers in perceptual, 

 Table 1: Summary of each modelling work 
 

 Zhang, 2016 Ko et al., 2019 Ko et al., 2019 Sanghavi, 2020 
Cognitive 
Framework 

QN-MHP QN-MHP QN-MHP QN-MHP 

Servers 
enhanced 

6, 8, B, C, & F 8, B, C, & F B, C, & F  8, B, C, & F 

Independent 
variables of 
the 
experiment 

Loudness and type of 
speech cues (warning, 
danger, caution), lead 
time 

Type of auditory cues 
(speech, spearcons, 
earcons) 

Type of non-speech 
cues (existing takeover 
sounds, indication 
sounds, and continuous 
sounds) 

Driver emotions (anger 
and neutral), lead time, 
acoustic characteristics 
(fundamental 
frequency, number of 
repetitions of the 
sound) 

Modelling 
parameters 

Loudness, type of speech, 
lead time 

Subjective rating 
results (perceived 
intuitiveness, perceived 
urgency) 

Fundamental 
Frequency and number 
of repetitions of the 
sound, and the range of 
dominant frequencies 

Fundamental 
Frequency and number 
of repetitions of the 
sound, and the range of 
dominant frequencies 

Modelled 
variables 

Crash rates, response 
time, and perceived 
urgency  

Response time Response time Response time 

Validation 
Results 

Exp 1 
Crash rate - RMSE: 0.13, 
R2: 0.94 
Response time - RMSE: 
3.17, R2: 0.97 
Exp 2 
Crash rate - RMSE: 0.06, 
R2: 0.90 
Perceived urgency - 
RMSE: 1.49, R2: 1.00 

RMSE: 0.073, R2: 
0.925 
RMSE: 0.014, R2: 
0.999  

RMSE: 1.48, R2: 0.997 RMSE: 0.125, R2: 
0.505 
RMSE: 0.119, R2: 
0.711 
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cognitive, and motor subnetwork is 42ms, 24ms, and 18ms, 
respectively [13].  

Equation (4) is updated by the effect of loudness on 
response time and the effect of word choice. The effect of 
loudness on response time is modelled in the initial 
processing of a speech warning in Server 6: 
 

T6 = T6(0) / UL  (5) 
 

where T6(0) is the initial entity processing time in Server 
6 and UL denotes the effect of loudness on perceived 
urgency.  

The effect of signal word choice on response time is 
modelled by the following equation: 
 

T8 = (T8(0) X ni) / Us  (6) 
 

where T8(0) is the entity processing time in Server 8 and 
ni is the number of words in the ith speech warning. Us 
represents the urgency level expressed by the chosen words 
in the speech warnings. 

2.1.2 Experiment and Validation 
To validate this model, thirty-two participants (18 - 26 years 
old) participated in a driving simulation experiment. The 
speech warnings were generated before the appearance of 
the hazard. Each speech warning started with the signal 
word “Caution” and was followed by a description of the 
collision scenario presented (e.g., a vehicle at your front-left 
is running a red light) at 70 dBA with driving noise of 55 
dBA. To investigate drivers’ responses to speech warnings, 
their sights of the collision scenario were blocked by other 
vehicles (e.g., lead vehicles, parked vehicles or stacked 
vehicles at the intersection), and participants could only rely 
on the warnings to learn about the upcoming collision 
events. Each participant went through sixteen collision 
events with sixteen levels of lead time assigned to each 
event. The validation of the model was conducted via the 
Pearson correlation coefficient (R2) and the root-mean-
squared error (RMSE). For the crash rate with the speech 
warnings of different lead time levels, the model prediction 
comparing the experimental results had a RMSE of 0.13 
with an R2 of 0.94, which means the model was able to 
explain 94% of the data on average. For the brake-to-
maximum response time to the speech warnings, the model 
prediction comparing the experimental results had a RMSE 
of 3.17 with an R2 of 0.97. 

The second experiment [21] investigated the effect of 
loudness and signal word choice of in-vehicle collision 
warnings. Thirty participants drove through five different 
scenarios containing five different hazard events. Speech 
warnings consisted of the signal word “Notice” or “Danger” 
presented at either 70 or 85 dBA. The model prediction for 
crash rate with different speech warnings comparing the 
experimental results had a RMSE of 0.06 with an R2 of 0.90. 
The model prediction of rating of urgency and annoyance 
for signal word comparing the experimental results had a 
RMSE of 1.49 with an R2 of perceived urgency prediction of 
1.00. The R2 of annoyance was not calculated as there is no 
difference among annoyance ratings of signal words [21]. 

2.2 Speech and non-speech takeover warnings in 
automated vehicles 

The second study modelled driver behaviors in response to 
speech and non-speech takeover warnings in automated 

driving situations [27]. They modelled drivers’ response 
time. 

2.2.1 Modelling 
The QN-MHP framework was further enhanced by 
accounting for the effect of warning reliability and warning 
style on human response to auditory warning messages [28, 
29]. This was done specifically to include modelling human 
performance in speech warning responses and warning 
response type selection and execution. The warning 
response time for collision avoidance Tr (i, j) for a driver i 
in an event j, is modelled by the stimulus processing time of 
a route and the probability of a stimulus traveling through it, 
represented by the equation below [28, 29].  
 

(7) 
 

where wl and wsm represent the warning loudness and 
semantics respectively, wt is the warning lead time, ws 
represents the warning style and wr is the warning 
reliability. PTu (i, j) is defined as the processing time for a 
stimulus in driver i for an event j through a route u. This 
processing time through a route u was modelled by the 
addition of the total time of the stimulus running through all 
servers in the route u [16]. As seen in the previous section, 
there are two possible routes a signal can traverse for hazard 
perception as indicated by u = 1 (short) and u = 2 (long).  

The probability of a speech warning traveling through a 
short processing route was modelled as a function of the 
perceived urgency of warning Pwu, perceived urgency of 
hazard Phu and perceived trust in a warning Ptr [28, 29]. As 
it is shown in the equation below, the probability of 
traveling via a short route influenced by the perceived 
urgency of hazard Phu is modelled as an inverse function of 
warning lead time wt [28, 29]. 

 
Phu = 1/ wt  (8) 

The probability of traveling via a short route influenced 
by the perceived warning urgency Pwu is modelled as a 
function of warning loudness and warning semantics, where 
U(wl) [30] is the perceived urgency of a warning signal’s 
loudness and U(wsm) is the perceived urgency of a warning 
signal’s semantics [28, 29]. Also, the probability influenced 
by perceived trust of the warning Ptr was modelled as a 
function of warning reliability wr and warning style ws [28, 
29]. The equations of Ptr and Pwu were described in the next 
section where a new model is developed based on this 
model. Ko et al. [27] enhanced this model by adding 
perceived intuitiveness and perceived urgency using 
subjective rating scales on different types of auditory 
warnings.  

Trust is directly related to intuitiveness because trust 
requires adequate and intuitive communication [31] and 
heuristic processing tends to be primarily determined by 
belief in intuition [32]. The Rational versus Experiential 
Inventory (RVEI) [33] was used to measure propensity for 
rational processing and belief in the intuition scale 
indicating the extent to which participants use and rely on 
their intuition. Also, intuitiveness is related to accuracy and 
intelligibility since intuitive interaction is defined as a non-

!"($, &) = )* +!,($,&) × +,($, &,./, .01,.2,.0,.3)
4

,56
!1!
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challenging cognitive process in information-based 
activities [34]. In the previous studies on trust in the system, 
the increase in accuracy and intelligibility led to the increase 
in trust [35, 36]. It was assumed from these results that the 
intuitiveness of auditory cues is positively correlated with 
the perceived trust level of the cues. In the previous models 
[28, 29], the probability of warning information traveling 
via a short route influenced by the perceived trust of the 
warning Ptr was modelled by warning reliability wr and 
warning style ws as follows. 

 
Ptr = 1/2 (wr + σ(ws))  (9) 
 
where σ(ws) is either 0.0 or 1.0 depending on the 

warning styles that are notification and command. The first 
variable of warning reliability was constant in Ko et al’s 
study. The second variable of σ(ws) was replaced by I(ws), 
which denotes the intuitiveness of the auditory warnings 
depending on the warning style. The value of I(ws) for 
speech was directly replaced by the maximum value for 
speech warning in the previous study [28, 29], which is 1.0, 
and other values were calculated depending on the relative 
differences between measured intuitiveness levels of speech 
and others in Experiment 1. Specifically, the values of I(ws) 
for spearcon and earcon are calculated by dividing the 
intuitiveness rating score of the auditory warning by the 
reference score (speech warning). As a result, Ptr was 
modified as  

 
Ptr =1/2 (wr + I(ws))  (10) 
 
where the value of I(ws) was estimated as 1.000 for 

speech, 0.825 for spearcon, and 1.05 for earcon. 
 
The relationship between warning style and perceived 
urgency 
In the previous models [28, 29], the probability of a warning 
traveling via a short processing route is influenced by 
perceived urgency of warnings Pwu , which was modelled as 
a function of warning loudness wl and warning semantics 
wsm. 

 
Ptr =1/2 (U(wl) + U(wsm))  (11) 
 
In Ko et al.’s study [27], the first variable of U(wl) was 

maintained since the loudness of sounds was controlled. 
U(wsm) was originally provided by the previous study on 
word choice [18], but was updated. To consider non-speech 
warnings such as earcon and spearcon, the variable of 
U(wsm) was replaced by U(ws), which indicates the urgency 
level of auditory warnings. The value of U(ws) for speech 
was directly replaced by the value for speech warning in the 
previous model [28, 29], which is 90.53, and other values 
were calculated depending on the relative differences 
between measured urgency levels of speech and other 
sounds just as in the intuitiveness calculation. As a result, 
Pwu was modified as 

	
  
Ptr = 1/2 (U(wl) + U(ws))  (12) 
 
where U(ws) is 90.530 for speech, 90.530 for spearcon, 

and 114.852 for earcon. 
 
The response time in auditory warnings 
The response time was defined as the time duration from the 

moment the auditory cue for takeover requests occurs to the 
moment the participant grabs the steering wheel. According 
to [16], the response time (Tr) of an auditory stimulus can be 
modelled by totalling the processing time of all the servers 
on the route as below. 

 
Tr = (PT5 + PT6 + PT8 + PTB+ PTW + PTY + PTZ) X PI 
+ (PT5 + PT6 + PT8 + PTB + PTC + PTF + PTC + PTW + 
PTY + PTZ) X PII  (13) 
 
where PTk represents processing time at server k and Pk 

is the probability of choosing route k (k = I indicating the 
short route, and k = II indicating the long route). The 
probabilities of a stimulus traveling via the short route 
(Route I) can be calculated following the previous model 
[28, 29].  

 
PI = 1/3 (Pwu + Phu + Ptr)  (14) 
PII = 1 - PI  (15)  
 
where Pwu, Phu, and Ptr are the probabilities influenced 

by perceived warning urgency, perceived hazard urgency, 
and perceived trust of the warning respectively. 

Increased perceived urgency of an auditory warning 
leads to a decreased response time for a task performed [37, 
38]. According to [16], the perceptual processing time is 
inversely affected by perceived urgency. The perceived 
urgency was modelled from the characteristics of warning 
sounds such as loudness and semantics. As mentioned, 
Hellier et al. [18] found that loudness had a positive 
relationship with perceived urgency.  

In Ko et al.’s study [27], the processing time in the 
perceptual sub-network was calculated by using the directly 
measured perceived urgency level of each warning, u(ws). 
The value of u(ws) for speech was directly substituted by the 
value for speech warning in the previous study [28, 29], 
which is 1.0, and other values were calculated depending on 
the relative differences between measured urgency levels of 
speech and others. Specifically, the values of u(ws) for 
spearcon and earcon were calculated by dividing urgency 
rating score of the auditory warning by the reference score 
(speech). As a result, the equation of the response time of an 
auditory stimulus, Tr, was modified as 

 
Tr = ((PT5 + PT6 + PT8)/u(ws) + PTB+ PTW + PTY + PTZ) 
X PI 
+ (PT5 + PT6 + PT8 + PTB + PTC +  PTF + PTC + PTW + 
PTY + PTZ) X PII + ε  (16) 
 
where ɛ is an added time as a free parameter which was 

estimated to the predicted processing time in the QN-MHP 
to fit their experimental data from Experiment 1 (ɛ = 1.060). 
The same value of this free parameter was used for 
validation with Experiment 2 data. 

2.2.2 Experiment and Validation 
To validate this model, twenty-two participants (M = 20 
years old, SD = 1.7) participated in a driving simulation 
experiment. They chose three representative types of 
auditory warnings having unique characteristics and 
differences from each other. Specifically, speech was shown 
to be extremely learnable, whereas earcons were difficult to 
learn [39]. Male voice, “take over” was recorded for speech. 
For spearcons, the wave file of the speech clip was 
compressed by using the SOLA algorithm [40]. Sine wave 
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with two dominant frequencies (880, 1760 Hz) repeated four 
times was used for earcon following NHTSA [41] and ISO 
[42] guidelines. The amplitude and duration of all the 
sounds were controlled to be equivalent (Mean = 70dB, 
around 300ms). As a basic visual warning, the text, “Please 
take over” was displayed on the center monitor while 
auditory warnings were being generated. For the driving 
scenarios, participants were instructed to drive a car on a 
two-lane road in a rural area. Participants drove three laps in 
the experiment. A within-subjects experimental design with 
three auditory warning styles–speech, spearcon and earcon 
was applied in their experiment. The order of the conditions 
for each participant was counterbalanced. After a short 
driving, participants were instructed to take their hands off 
the steering wheel and their foot off the gas pedal. During 
the autonomous driving mode, the participants played the 
game, 2048 on a laptop placed next to them on the center 
console. After a while, the participants were triggered to 
take over from the autonomous driving mode by critical 
situations on the road such as deer, a parked car, and a 
service vehicle, that blocked most or all of the driving lanes 
on the road. A few seconds after avoiding the hazardous 
situations, the participants were instructed to take off the 
control and return to play the game again. Each participant 
continued driving for all three obstacles in the scenario and 
repeated the process in three conditions that generate 
different auditory warning styles. 

First, the laps 2 and 3 data were modelled because the 
first lap data might reflect the significant learning effects. 
The prediction data showed the same pattern to the 
experimental data, which indicates the longest reaction time 
for spearcon and the shortest reaction time for earcon. The 
RMSE was 0.073 (73ms) with an R2 of 0.925, which means 
the model was able to explain 92.5% of the experimental 
data on average. 

When only using the final lap data, the prediction data 
also showed the same pattern in the experimental data, 
which indicates the longest reaction time for spearcon and 
the shortest reaction time for earcon. The RMSE was 0.014 
(14ms) with an R2 of 0.999. Both RMSE and R2 values in 
validation 2 were higher than those values in validation 1. 

2.3 Non-speech takeover warnings in automated vehicles 

The next study modelled driver behaviors in response to 
non-speech takeover warnings in automated driving 
situations [27]. They modelled drivers’ response time by 
varying types of non-speech auditory cues. 

2.3.1 Modelling 
The relationship between warning style and perceived trust 
In this modelling work, three different types of non-speech 
sounds (two already implemented sounds and one newly 
designed sound) were employed. Perceived urgency that 
influences the probability of choosing a short route, Pwu, 
was estimated based on acoustic characteristics–
fundamental frequency (Hz), number of repetitions/second, 
and number of dominant frequencies. A new parameter, 
U(wac), was added to represent the perceived urgency from 
acoustic characteristics of auditory cues. Pwu was modelled 
as below.  
 

Pwu = 1/3 (U(wl) + U(wsm) + U(wac))  (17) 
 
The values of U(wac) was estimated as below. 

 
U(wac) = 1/3 (U(wfreq) + U(wrep) + U(wpit))  (18) 
 
U(wfreq) represents the fundamental frequency, U(wrep) 

represents the number of repetitions per second, and U(wpit) 
represents the pitch range of dominant frequencies. 
Coefficients in each term were derived from the previous 
studies (fundamental frequency [43], number of repetitions, 
and pitch range: [44]) showing linear relationships between 
each aspect and perceived urgency. 

2.3.2 Experiment and Validation 
Twenty-four participants (M = 20 years old, SD = 1.1) 
participated in the experiment. Twelve participants’ data 
were used for modelling. The procedure of the experiment 
was exactly same as the experiment reported in the previous 
section except for the sounds used. The experiment 
included existing takeover warnings (Tesla and Hyundai 
Motors), a pair of indication sounds that can be easily heard 
from electronic devices (e.g., function on and function off 
sounds that have increasing and decreasing polarity 
respectively). The last pair of sounds included rather longer 
musical sounds that had one or two fundamental 
frequencies. But the average time was similar to that of the 
short sounds (by repeating them).  

In modelling, Tesla, Hyundai Motors, and indication 
sounds with decreasing polarity were used. The average 
response times of each auditory display type for takeover 
requests were predicted and validated with the validation 
data sets from the remaining twelve participants. The 
RMSE was 0.148 (148 ms) with an R2 of 0.997, which 
means the model was able to explain 99.7% of the 
experimental data on average. In both prediction and 
validation data sets, the longest reaction time was observed 
for Tesla sound and the shortest reaction time for Hyundai 
Motors sound. 

2.4 Non-speech takeover warnings for drivers in 
automated vehicles 

The final study modelled driver behaviors in response to 
non-speech takeover warnings in automated driving 
situations [45]. They modelled drivers’ response time by 
varying the acoustic variables of earcons.  

2.4.1 Modelling 
This study used the same modelling scheme with acoustic 
parameters as the third study.  
 

(19) 
 

(20) 
 

  (21) 

2.3.2 Experiment and Validation 
Thirty-six participants took part in the study (M = 24.5 years 
old, SD = 3.3). Each participant had a minimum of two 
years of driving experience and was at least 18 years old. 
Participants were randomly assigned to two groups: an 
anger induced group and a neutral induced group. However, 
there was no difference in their response time to takeover 
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displays. Therefore, the validation was conducted with the 
aggregated data of both emotional groups. 

The participants were asked to drive a semi-automated 
vehicle on the center lane of a three-lane highway. The 
vehicle was moving at a speed of 110 km/h. The visibility 
around the vehicle was reduced to 100 meters using fog. The 
scenario was started with the vehicle having its automated 
driving system (ADS) turned on. At randomly assigned 
times, the participants were required to respond to different 
multi-modal displays (an auditory plus visual display on the 
screen showing the words, “Takeover Control of the 
Vehicle” during takeover requests) in specific driving 
scenarios where drivers had to evade obstacles, with the 
auditory warnings differing for each obstacle. After 
avoiding the obstacles, the participants handed over control 
back to the vehicle. Each participant drove a total of three 
laps which lasted around nine minutes. Every lap had three 
obstacles each and so, each participant faced nine different 
obstacles (3 x 3). The order of alert presentation was 
counterbalanced with a Latin square design. 

The RMSE was 0.125. The R2 for the model was 0.505 
for all drivers combined, which means the model was able 
to explain 50.5% of the data on average. A higher number of 
repetitions in auditory warnings would result in higher 
perceived urgency and thus, faster reaction times. This 
increase in perceived urgency due to the increase in the 
number of repetitions per second was incorporated into the 
model as well.   

However, analysis from the empirical data showed that 
although an increase of one repetition per second to four 
repetitions per second resulted in faster reaction times, the 
increase to eight repetitions per second did not show a 
decrease in reaction time. Thus, the low correlation of the 
data with the modelled predictions was because the reaction 
time for the eight repetitions auditory warnings did not show 
a decrease as the model predicted it should be. After 
removing reaction times for eight repetitions per second for 
the correlation analysis, the RMSE of 0.119 with the R2 
being significantly improved to 0.711, representing a 20.6% 
increase in the data explained by the model on average.  

3. DISCUSSION AND FUTURE WORK  

We showed four different modelling and validation case 
studies using QN-MHP to describe the applications and 
enhancements of computational modelling with respect to 
auditory displays. The studies included speech and non-
speech cues. Except for the first study, all the studies 
modelled drivers’ takeover response time to auditory 
warnings in semi-automated vehicles. With the same 
architecture, they advanced the model using a variety of 
parameters, including objective and subjective data–
loudness, word of speech, perceived intuitiveness and 
urgency, fundamental frequency, number of repetitions, and 
range of dominant frequencies. The first and last studies 
also included lead time, which was not detailed in the 
present paper. These models discussed the effects of 
warning characteristics on auditory perception, auditory 
recognition, route choice and memory decay in the working 
memory (Phonological loop and Central executive), and 
hazard evaluation, following the neurological mechanisms 
across the perceptual, cognitive, and motor subnetworks. 
The models showed robust and reliable prediction values 
(mostly, over 90%). The last study used the same modelling 
scheme as the third one even though the experimental 

procedure was not exactly same. Thus, it showed the 
applicability of the modelling to a different situation. The 
model could still account for 71% of the experimental data, 
which is promising.  

We demonstrated that the QN-MHP framework is one 
tool we can use, but different modelling techniques are 
available and how these techniques can be made more 
relevant for the ICAD community should be tested. This 
task will include comparisons of different approaches–e.g., 
machine learning (bottom-up) vs. top-down (cognitive 
architecture informed), vs. hybrid models. Modelling 
multimodal interactions, beyond audio-only stimuli would 
be of interest. We can further discuss the way modelling 
approaches can be aligned with other approaches (e.g., user 
studies, quantitative experiments, designs, prototyping) so 
that they can complement and strengthen each other.  

As with other methods, computational modelling has 
limitations. In some cases, free parameters are inserted to 
modify the equation to fit the empirical data. It is hard to 
pinpoint where the gaps occur. Even though the approach 
described here is based on known neurological and 
psychological knowledge and mechanisms, there might be 
incorrect assumptions. For instance, it assumes all the 
processes in each subnetwork and server happen 
independently and so, the response time is obtained by 
summing sequential temporal periods. This is a fundamental 
assumption in cognitive psychology, but there is still 
argument about it. It is also hard to consider the integration 
procedure of various information pieces. This type of 
modelling work is based on ideal responses to each stimulus 
of the sampled group (e.g., young adults). Therefore, the 
prediction may not work for other groups of people (e.g., 
older adults). Finally, compared to psychological 
experiments, few researchers have used the computational 
modelling approach. Consequently, more cumulative 
research is required.    

In summary, with computational modelling, researchers 
can more systematically investigate the quantitative 
relationship between sound parameters and human 
perceptions and behaviors by manipulating speech and 
acoustic parameters as can be seen in Table 1. 
Computational modelling can save time and money because 
it can provide estimated behavioral outcomes without 
conducting empirical experiments with human participants. 
The systematic results can guide designers to design 
appropriate auditory displays in the given contexts and 
constraints.  
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Appendix. 

 

 

(a) Perceptual Subnetwork  (b) Cognitive Subnetwork (c) Motor Subnetwork 
1. Common visual processing A. Visuospatial sketchpad V. Sensorimotor integration 
2. Visual recognition B. Phonological loop W. Motor program retrieval 
3. Visual location C. Central executive X. Feedback information collection 
4. Visual recognition and location integration D. Long-term procedural memory Y. Motor program assembling and  
5. Common auditory processing E. Performance monitor     error detecting 
6. Auditory recognition F. Complex cognitive function Z. Sending information to body parts 
7. Auditory location G. Goal initiation 21-25: Body parts: eye, mouth, left  
8. Auditory recognition and location H. Long-term declarative & spatial 

memory 
           hand, right hand, foot 

 
Figure 2: The general structure of the queuing network-model human processor adapted from [16]. The short route goes from server B to 

server W, while the long route goes from server B to server C. 
 


